[Home]LU Matrix Inversion

BOOST WIKI | RecentChanges | Preferences | Page List | Links List

Difference (from prior major revision) (minor diff, author diff)

Changed: 18c18
void InvertMatrix? (const ublas::matrix<T>& input, ublas::matrix<T>& inverse) {
bool InvertMatrix? (const ublas::matrix<T>& input, ublas::matrix<T>& inverse) {

Changed: 27,28c27,29
lu_factorize(A,pm);

int res = lu_factorize(A,pm);
if( res != 0 ) return false;


Added: 33a35,36

return true;

Changed: 40c43
This code snipet is concise and effective, but when input matrix is singular, the function simply crashes. A more complex version is at the second section of Effective UBLAS/Matrix Inversion with the capability to detect and report singularity of the input matrix.
This version is efficient as using LU. A more complex and probably inefficient version is at the second section of Effective UBLAS/Matrix Inversion.

Removed: 42d44
edit: lu_factorize() returns 0 if it was successful. It returns (k+1) if it detects singularity after processing row k. So one should always check its return value.

The following code inverts the matrix input using LU-decomposition with backsubstitution of unit vectors. Reference: Numerical Recipies in C, 2nd ed., by Press, Teukolsky, Vetterling & Flannery.
 #ifndef INVERT_MATRIX_HPP
 #define INVERT_MATRIX_HPP

 // REMEMBER to update "lu.hpp" header includes from boost-CVS
 #include <boost/numeric/ublas/vector.hpp>
 #include <boost/numeric/ublas/vector_proxy.hpp>
 #include <boost/numeric/ublas/matrix.hpp>
 #include <boost/numeric/ublas/triangular.hpp>
 #include <boost/numeric/ublas/lu.hpp>
 #include <boost/numeric/ublas/io.hpp>

 namespace ublas = boost::numeric::ublas;

 /* Matrix inversion routine.
    Uses lu_factorize and lu_substitute in uBLAS to invert a matrix */
 template<class T>
 bool InvertMatrix? (const ublas::matrix<T>& input, ublas::matrix<T>& inverse) {
 	using namespace boost::numeric::ublas;
 	typedef permutation_matrix<std::size_t> pmatrix;
 	// create a working copy of the input
 	matrix<T> A(input);
 	// create a permutation matrix for the LU-factorization
 	pmatrix pm(A.size1());

 	// perform LU-factorization
 	int res = lu_factorize(A,pm);
        if( res != 0 ) return false;

 	// create identity matrix of "inverse"
 	inverse.assign(ublas::identity_matrix<T>(A.size1()));

 	// backsubstitute to get the inverse
 	lu_substitute(A, pm, inverse);

 	return true;
 }

 #endif //INVERT_MATRIX_HPP
Hope someone finds this useful. Regards, Fredrik Orderud.

Matrix inversion with Singularity Detection

This version is efficient as using LU. A more complex and probably inefficient version is at the second section of Effective UBLAS/Matrix Inversion.


BOOST WIKI | RecentChanges | Preferences | Page List | Links List
Edit text of this page | View other revisions
Last edited September 4, 2007 5:23 am (diff)
Search:
Disclaimer: This site not officially maintained by Boost Developers