
Building High Performance & Highly Available Systems

 by Jeff Garland
President & CTO

CrystalClear Software, Inc
August 2000

Overview

Over the past 15 years I have been involved in the development of several performance
critical and highly available systems for telecommunications, process control, securities
trading, and satellite management. All these systems have the goal of reaching at least
99.999% availability. In addition, they all have elements that require high performance.
Some of these systems have pieces with hard real-time constraints while others simply
have a need for high transaction throughput. Several of these systems are widely
deployed and hence they provide examples of successful highly available and high
performance systems.

This paper will describe some common features and mechanisms of these systems that
result from high performance and highly available requirements. Second, it will describe
how these features impact the software architecture. Finally, it will attempt to distill
some key approaches for building robust architectures for high performance and highly
available systems.

To understand how performance and availability impact software architecture, we must
first define architecture. The 4+1 view model of architecture by Kruchten [Kruchten98]
defines 5 main aspects of software architecture: the logical view, the implementation
view, the process view, the deployment view, and the use case view. The logical view
addresses the system functional requirements and provides both static and dynamic views
of the classes and packages that comprise the system. The organization of the source
code, data files, and other aspects of the development environment are modeled in the
implementation view. The process view models concurrency issues, such as splitting of
functions into processes and threads. The deployment view describes how the various
components are mapped to hardware at run time. Finally, the use case view describes a
set of scenarios that the system must support. The following discussion will focus mostly
on impacts to the logical, process, and deployment aspects of the architecture.

Common Features and Techniques of High Performance & Highly Available
Systems

Table 1 summarizes some common features and techniques utilized in high performance
and high availability systems. These features and their architectural impact will be
described in detail below. Each feature is a result of the performance goals, availability
goals, or both. In some cases, the performance and availability goals conflict. That is,

the utilization of a particular technique for performance may confound availability or vice
versa.

Feature/Technique Driving
Factors

Conflicting
Factor

Self-knowledgeable (configurable,
instrumented, and upgradeable)

Availability,
Performance

In-memory caches & databases Performance Availability
Isolation of real-time processing Performance
Loosely coupled distributed processing
using message oriented communication

Availability Performance

Multi-layer error handling Availability

Table 1: Common Features of HA & HP Systems

High performance and high availability often requires software that is self-
knowledgeable. That is, there is a suite of management software that is aware-of and
operates on the software itself. This knowledge usually includes at least three
dimensions: configuration, instrumentation, and online upgrade. Configuration is
frequently used to for performance and scalability, online upgrade is required for
availability, and instrumentation is required for both performance and availability.

A configurable system allows for “coding free” optimization of system functions. For
example, different installations of a software system might need to scale from a couple of
nodes to fifty or more. The software components are not typically re-written, but only
reconfigured to take advantage of the additional processing power. Elements of the
system utilize the configuration to perform system startup, monitoring, load balancing,
and other administrative system tasks. Many systems support the ability to change the
configuration and hence the processing patterns without restarting the system. Building
configurable components impacts the logical architecture (requiring components to be
have configurable aspects) and often reflects the physical aspects of the architecture
(nodes and network in the system). Recently, these techniques have become widespread
as the rise of the Internet and various directory services. For example, the Domain Name
Service has demonstrated the flexibility and scalability that can be created by building
software that allows for reconfiguration of the physical architecture.

Instrumentation supports monitoring of status, performance tuning, and often online
debugging. Status instrumentation allows the system to monitor components for failure.
Human operators may be provided with alarms that alert them to perform maintenance
tasks when a failure occurs. Performance instrumentation provides statistical data that
allows for overall system tuning. Online debugging can provide software tracing and
other features to assist in problem resolution. Instrumentation tends to crosscut the
logical architecture of the system, affecting the design and implementation of many
components.

Online software upgrades are often essential to providing high availability. Upgrading
software without shutting down the system can be extremely complex. It often involves
partial system shutdowns, online database evolution, and simultaneous operation of
multiple versions of the software. It is often a requirement to be able to rollback to the
old software version if something goes wrong with an upgrade. The design of new
versions of software may be significantly limited since outage time might be required for
some complex upgrades. For example, database schema upgrades might be put off until a
major release. Temporary patches, which utilize existing database fields in non-standard
ways, may be required to work around the inability to upgrade the database schema.
Online upgrade adds a whole new dimension to software design and management that is
not well supported by the current breed of software production tools and methods.

In-memory databases and caches are a common technique in high performance systems
that must provide bounded time or extremely fast response. The in-memory database
overcomes I/O speeds that are too slow to meet performance goals. Clearly, the in-
memory database is at odds with the highly availability goal since the memory is a
“volatile” single point of failure. For high read, low write databases (a simple website
database or system configuration) the cache is easily distributed and writes can be logged
synchronously to disk. In systems requiring high write volumes, the in-memory database
is usually made highly available by logging to disk, redundant hardware, or a distributed
backup. Traditionally, in-memory databases have been highly customized solutions with
a significant impact on the system design and architecture. Recently commercially
available in-memory systems (e.g. Times Ten) have begun to offer a more standard
alternative.

Often in hard real-time systems with bounded time constraints on processing, the real-
time aspect of the system will be logically or physically isolated from the non-real time
aspects of the system. For example, a real time operating system may ensure that certain
functions are performed at a regular interval (ie: polling hardware to detect state
changes). Once state changes are detected this fact is then sent as a message to some
other processor for display or other processing. Thus, low-level event detection is
isolated from high-level processing.

The most significant influence of availability and performance requirements is in the
deployment aspect of the architecture. A key principle of building high availability
systems is to avoid single points of failure. As a result, all processing and state must be
distributed among multiple physical hardware nodes or onto highly available hardware.
Today, more and more systems are attempting to forgo the cost of high availability
hardware by implementing fault tolerance in software alone. As an end result, distributed
processing becomes essential to the implementation of availability goals. Even systems
that utilize high availability hardware to simplify software design often use distribution to
provide the required performance scalability. Many systems utilize a “loosely coupled”
distributed approach. That is, a set of software components connected by a messaging
infrastructure. A reliable publish/subscribe paradigm is a common strategy for
communication between components. Of course, distributed systems introduce a host of

other issues including the need for reliable networks and replication or logging of state
information.

Successful high availability systems tend to have a multi-level error handling approach.
For example, code must be able to detect and efficiently handle invalid data without
application failures. In addition, when an application detects an unrecoverable condition
(usually some sort of software bug) it must be capable of rapidly restarting to an
uncorrupted state with a minimal impact on the system. When an application crashes it
must provide debugging information so that software problems can be rapidly addressed.
Design of robust error handling schemes is a difficult task that can significantly impacts
the logical architecture and component interfaces.

Strategies for Building HPHA Systems

The software architect should strive to minimize the impact of performance and
availability requirements on the logical architecture. Most software is difficult enough
without worrying about how to make it fault tolerant and high performance. Ideally, a
small focused group dedicated can address the high performance and high availability
aspects of the system. For example, many application displays, which are not impacted
by these requirements, can be developed more effectively without a focus on
performance and availability. Overall, application development is clearly simplified
when it does not need to be highly concerned about performing some set of processing
within a set deadline (hard real-time). An object-oriented analysis model developed
without regard for the process and deployment architecture often provides a good starting
point for building a robust architecture. This allows the team to get an understanding of
the logical architecture without the additional complications of process and deployment.
Sketches of the expected deployment architecture should also be created during the
development of system analysis and requirements to begin understanding the constraints
and limits that will be eventually be imposed on the design. Finally, as the design
progresses process and deployment design need to be a key focus to ensure correct
mapping of functions to components.

In the area of performance, it is critical to get an early understanding of the performance
requirements. In addition, design of hard real-time elements should be isolated. An early
understanding of the performance requirements allows for early prototyping to mitigate
potential design issues. Of course, often the details of particular aspects of performance
may not be well formulated during initial design. For example, typically in
communications systems there are well-understood limits to the allowed delay time
before a human ear can perceive a delay in a voice conversation. During the initial
design it is known that various components must perform a function that is bounded by
this delay time. However, it may not be clear how to assign budgets to these
components. Further, even if performance budgets are assigned it may not be possible to
implement within these budgets.

Almost all high performance and highly available systems are distributed systems. A
loosely coupled approach that utilizes a messaging infrastructure seems to be a recurring
solution. This solution provides for separation of components with well-defined
interfaces. In addition, it can build highly scalable systems since new processing
components can be easily added. In addition, commercially available messaging
products and standards eliminate the need for system designers to recreate this
fundamental aspect of the system. It is also desirable if processing units of the distributed
system can be stateless (ala a simple web server). That is, there is no processing state to
backup for fault tolerant operation. This strategy is ideal since it allows for both load
balancing and fault tolerant operation. However, many applications must provide
replication of state by taking snapshots at various processing points. However, building a
design that minimizes the need to replicate state simplifies software upgrades and fault
tolerance design.

From a software development perspective it is critical to have highly evolved software
production processes. The ability to rapidly provide and document software changes is a
key to success in achieving fault tolerance. Design and code inspections are usually
needed to reduce the number of bugs and ensure the implementation conforms to the
architecture. Highly iterative processes are usually essential to meeting high performance
goals and stabilizing the architecture as early as possible.

Using off the shelf components can be both helpful and harmful. Some components are
made explicitly for these kinds of applications and provide a big boost to the speed of
development. However, some components may not be well suited for high performance
or high availability systems. It is crucial to carefully evaluate components to be sure they
will not fit into the system configuration, error handling, and instrumentation schemes. If
a third party product is to be used in a performance critical system component it is
essential to understand its performance weaknesses early in the design.

In conclusion, a sound software architecture is essential to the delivery of a high
performance and highly available system. This paper has illustrated a few features and
techniques of some successful systems and recommended some practices for the
development of new systems.

References

Kruchten98 - Kruchten, Philippe, The Rational Unified Process: An Introduction.
Addison-Wesley, 1998.

About the Author

Jeff Garland is a Software Architect and CTO of CrystalClear Software. He has worked
on high availability and high performance systems for Motorola, Honeywell Industrial
Automation, and AG Communication Systems (part of Lucent). He is currently re-
architecting the Service Delivery Platform for the NASDAQ stock market. He holds a

Master’s degree in Computer Science from Arizona State University and a Bachelor of
Science in Systems Engineering from the University of Arizona.

 Copyright CrystalClear Software 2000 – All Rights Reserved

